
Mechanics and Mechanical Engineering

Vol. 22, No. 1 (2018) 41–48

c⃝ Lodz University of Technology

Numerical Studies for Solving a Free Convection Boundary–Layer
Flow Over a Vertical Plate

Mohamed I. A. Othman

Department of Mathematics
Faculty of Science

Zagazig University, P.O. Box 44519, Egypt
m i a othman@yahoo.com

A. M. S. Mahdy

Department of Mathematics
Faculty of Science,
Taif University 888

Saudi Arabia
amr mahdy85@yahoo.com

Received (5 August 2017)

Revised (19 August 2017)

Accepted (2 September 2017)

In this paper, The aim of this study is to present a reliable combination of the shifted
Legendre collocation method to approximate of the problem of free convection boundary-
layer flow over a vertical plate as produced by a body force about a flat plate in the
direction of the generating body force. The proposed method is based on replacement of
the unknown function by truncated series of well known shifted Legendre expansion of
functions. An approximate formula of the integer derivative is introduced. Special at-
tention is given to study the convergence analysis and derive an upper bound of the error
of the presented approximate formula. The introduced method converts the proposed
equation by means of collocation points to a system of algebraic equations with shift
Legendre coefficients. Thus, by solving this system of equations, the shifted Legendre
coefficients are obtained. Boundary conditions in an unbounded domain, i.e. boundary
condition at infinity, pose a problem in general for the numerical solution methods. The
obtained results are in good agreement with those provided previously by the iterative
numerical method. As a result, without taking or estimating missing boundary con-
ditions, the shifted Legendre collocation method provides a simple, non-iterative and
effective way for determining the solutions of nonlinear free convection boundary layer
problems possessing the boundary conditions at infinity.
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1. Introduction

A great number of the nonlinear phenomena can be modeled by nonlinear differential
equations in many areas of scientific fields such as engineering, physics, biology, fluid
mechanics. Since convection problems come across both in nature and engineering
applications, they have attracted a great deal of attention from researchers. Free
convection flow problems, which results from the action of body forces on the fluid,
are one of the common areas of interest in the field of convection problems. For
the sake of simplicity, the many of free convection boundary-layer problems are
considered as a special case of free convection flow about a flat plate parallel to
the direction of the generating body force. The most notable model of this topic
is the experimental and theoretical considerations of Schmidt and Beckmann [1]
concerning the free convection flow of air subject to the gravitational force about
a vertical flat plate [2].

This type of free convection boundary-layer problem was studied at the NACA
Lewis Laboratory during 1951 and then was analyzed by an iterative numerical
method by Ostrach in 1953. After that Na and Habib [3] solved these problems by
a parameter method in 1974. In 2005, Kuo [4] employed these problems with the
differential trans-formation method (DTM). In [3] and [4], the boundary conditions
of f

′′
(0) and θ

′
(0) is taken from the Ostrach [2].

The nonlinear differential equations which have boundary conditions in un-
bounded domains have a great interest. However, many of the modeled nonlinear
equations do not have an analytical solution. Both analytical solution methods and
numerical solution methods are used to solve these equations. In this study, the
shifted Legendre is one of the effective and reliable numerical solution method for
handling both linear and nonlinear differential equations. In order to overcome the
difficulty in unbounded domains, i.e. infinity boundary conditions are widely used.

The present study has an important due to the fact that this problem is a heat
transfer problem consisting boundary conditions at infinity and is solved by the
Shifted Legendre collocation method. In addition, instead of discrete solutions,
continuous solutions are obtained without taking initial conditions and/or estima-
tions for the lack of boundary conditions.

Legendre polynomials are well known family of orthogonal polynomials on the
interval [1, -1] that have many applications. They are widely used because of their
good properties in the approximation of functions [5-8]. Orthogonal polynomials
have a great variety and wealth of properties. Some of these properties take a very
concise form in the case of the Legendre polynomials, making Legendre polynomials
of leading importance among orthogonal polynomials. The Legendre polynomials
belong to an exclusive band of orthogonal polynomials, known as Jacobi polynomi-
als, which correspond to weight functions of the form (1 − x)α(1 + x)β and which
are solutions of Sturm-Liouville equations [5]. The Legendre collocation method is
used to solve many problems, in more papers such as [5-8]. In this work, we use
the properties of the Legendre polynomials to derive an approximate formula of the
integer derivative D(n)y(x) and estimate an error upper bound of this formula, then
we use this formula to solve numerically the proposed problem.
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2. Mathematical analysis

We consider laminar free-convection flow of an incompressible viscous fluid about
a flat plate parallel to the direction of the generating body force. The physical model
is shown in Fig.1. By the assumption that the flow in the laminar boundary layer
is two dimensional, the continuity equation, the momentum equation, the energy
equation and the boundary conditions can be expressed as [1]:

∂u

∂x
+

∂u

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= gβ(T − T∞) + v

∂2u

∂y2
(2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3)

With the boundary conditions:

at x = 0 u = 0 and T = T∞ (4)

at y = 0 u = v = 0 and T = T0 (5)

as y → ∞ u = 0 and T = T∞ (6)

where u and v are the velocity in the x and y direction respectively, ν is the viscosity
of the fluid, α is the thermal diffusivity of the fluid.

Figure 1 Free convection flow over a vertical plate

After a group of transformations [2], the equations (1–3) with respect to the bound-
ary conditions (4–6) reduce to the following form:

f
′′′
(η) + 3f(η)f

′′
(η)− 2[f

′
(η)]2 + θ = 0 (7)
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θ
′′
(η) + 3Prf(η)θ

′
(η) = 0 (8)

The boundary conditions for the equations (7-8) are as follows:

at η = 0 f = f
′
= 0 θ = 1as η → ∞ f

′
= 0 θ = 0 (9)

where Pr is the Prandtl number.

3. An approximate formula of the integer derivative for Legendre poly-
nomial expansion

The well known Legendre polynomials are defined on the interval [−1, 1] and can
be determined with the aid of the following recurrence formula [2]:

Lk+1(z) =
(2k + 1)

(k + 1)
zLk(z)−

k

k + 1
Lk−1(z), k = 1, 2, ...

where, L0(z) = 1 and L1(z) = z. In order to use these polynomials on the interval
[0, 1] we define the so called shifted Legendre polynomials by introducing the change
of variable z = 2t− 1.

Let the shifted Legendre polynomials Lk(2t − 1) be denoted by Pk(t). Then
Pk(t) can be obtained as follows:

Pk+1(t) =
(2k + 1)(2t− 1)

(k + 1)
Pk(t)−

k

k + 1
Pk−1(t), k = 1, 2, ... (10)

where, P0(t) = 1 and P1(t) = 2t − 1. The analytic form of the shifted Legendre
polynomial Pk(x) of degree k is given by:

Pk(t) =

k∑
i=0

(−1)k+i (k + i)!

(k − i)(i!)2
ti (11)

Note that Pk(0) = (−1)k and Pk(1) = 1. The orthogonality condition is:∫ 1

0

Pi(t)Pj(t)dx =

{
1

2i+1 for i = j

0 for i ̸= j
(12)

The function y(t), which is square integrable in [0, 1], may be expressed in terms of
shifting Legendre polynomial as:

y(t) =

∞∑
i=0

yiPi(t)

where the coefficients yi are given by yi = (2i+ 1)
∫ 1

0
y(t)Pi(t)dt, i = 1, 2, ... .

In practice, only the first (m+1)-terms shifted Legendre polynomials are considered.
Then we have:

ym(t) =
m∑
i=0

yiPi(t). (13)

In the following theorem we will approximate the fractional derivative of y(t).
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Theorem 1. [6-8]:
Let y(t) be approximated by shifting Legendre polynomials as (13) then the

integer derivative of order n is given by:

y(n)m (t) =

m∑
i=n

i∑
k=n

yiw
(n)
i,k t

k−n (14)

Where, w
(n)
i,k is given by:

w
(n)
i,k =

(−1)(i+k)(i+ k)!

(i− k)!(k)!Γ(k + 1− n)
(15)

Proof:
Since the differentiation is a linear operation, then from (13) we get:

D(n)(ym(t)) =
m∑
i=0

yiD
(n)(Pi(t)) (16)

From the formula (10) we can obtain:

D(n)Pi(t) = 0, i = 0, 1, ..., n− 1. (17)

Therefore, for i = n, n+ 1, ..., m, and with (10) we get:

D(n)Pi(t) =

i∑
k=0

(−1)i+k(i+ k)!

(i− k)!(k!)2
D(n)(tk) =

i∑
k=n

(−1)i+k(i+ k)!

(i− k)!(k!)Γ(k + 1− n)
tk−n (18)

a combination of Eqs. (16–18) leads to the desired result.
Theorem 2. Legendre truncation theorem [5]:

The error in approximating x(t) by the sum of its first m terms is bounded by
the sum of the absolute values of all the neglected coefficients. If:

ym(t) =
m∑

k=0

ckLk(t) (19)

then:

ET (m) ≡ |y(t)− ym(t)| ≤
∞∑

k=m+1

|ck| (20)

for all y(t), m and t ∈ [−1, 1].

4. Procedure solution

In this section, we present the proposed method to solve numerically the system
of ordinary differential equations of the form (7–8). The unknown functions f(η)
and θ(η) may be expanded by finite series of shifting Legendre polynomials as the
following approximation:

fm(η) =

m∑
i=0

ciL
∗(η) θm(η) =

m∑
i=0

diL
∗(η) (21)
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From Eqs. (7–8), (21) and Theorem 1 we have:

m∑
i=3

i∑
k=3

ciγ
(3)
i,k η

k−3 + 3

(
m∑
i=0

ciL
∗
i (η)

)(
m∑
i=2

i∑
k=2

ciγ
(2)
i,k η

k−2

)
(22)

−2

(
m∑
i=1

i∑
k=1

ciγ
(1)
i,k η

k−1

)
+

m∑
i=0

diL
∗
i (η) = 0

m∑
i=2

i∑
k=2

diγ
(2)
i,k η

k−2 + 3Pr

(
m∑
i=0

ciL
∗
i (η)

)(
m∑
i=1

i∑
k=1

diγ
(1)
i,k η

k−1

)
= 0 (23)

We now collocate Eqs. (22–23) at (m− n+ 1) points ηs, s = 0, 1, ..., m− n as:

m∑
i=3

i∑
k=3

ciγ
(3)
i,k η

k−3
s + 3

(
m∑
i=0

ciL
∗
i (ηs)

)(
m∑
i=2

i∑
k=2

ciγ
(2)
i,k η

k−2
s

)
(24)

−2

(
m∑
i=1

i∑
k=1

ciγ
(1)
i,k η

k−1
s

)
+

m∑
i=0

diL
∗
i (ηs) = 0

m∑
i=2

i∑
k=2

diγ
(2)
i,k η

k−2
s + 3Pr

(
m∑
i=0

ciL
∗
i (ηs)

)(
m∑
i=1

i∑
k=1

diγ
(1)
i,k η

k−1
s

)
= 0 (25)

For suitable collocation points, we use roots of shifting Legendre polynomial
L∗
m−n+1(η).

Also, by substituting formula (21) in the boundary conditions (9) we can obtain
five equations as follows:

m∑
i=0

(−1)ici = 0
m∑
i=0

(−1)idi = 1
m∑
i=0

di = 0
m∑
i=0

L∗
′

i (η∞) ci = 0

(26)

1−
m∑
i=0

L∗
′′

i (0) ci + λ

m∑
i=0

L∗
′′′

i (0) ci + γ

m∑
i=0

L∗
′′′′

i (0) ci = 0

Eqs. (24–25), together with five equations of the boundary conditions (26), give
a system of (2m + 2) algebraic equations which can be solved, for the unknowns
ci, di, i = 0, 1, ..., m using the Newton iteration method.

5. Conclusion

In this paper, we used the Shifted Legendre collocation method. The boundary
conditions at infinity pose a problem in some of heat transfer problems as well as
many other nonlinear differential equations problems. Analytical solution of the
problem cannot be obtained due to both the lack of linearity of the problem and
the boundary conditions at infinity. In two-point boundary value problems where
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one point is infinity, two questions arise. The first one is that where infinity is
and the second question is that when a satisfactory approximation to a solution
has been obtained. In this study, a special case of free convection flow about a
flat plate parallel to the direction of the generating body force problem, which is
a nonlinear problem and possessing the boundary conditions at infinity, is solved
semi-analytically for the first time without taking or estimating boundary conditions
and it is easily seen that the solutions in the literature were made by using the
boundary conditions for f

′′
(0)and θ

′
(0)given by Ostrach [2]. Even Ostrach obtained

his solutions by estimating the values for f
′′
(0)and θ

′
(0) [2]. In addition to these,

it is clear that the obtained series is convergent. All numerical results are obtained
using the Matlab program.
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Nomenclature
g – acceleration of gravity
T – temperature
T∞ – free stream temperature
u – velocity component along x
v – velocity component along y
f – non-dimensional stream function
θ – non-dimensional temperature function
α – thermal diffusivity
β – thermal expansion coefficient of fluid
η – similarity variable
ν – kinematic viscosity


